Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan Gao,^a* Li-Hua Huo,^a Ji-Wei Liu^{a,b} and Hui Zhao^a

^aLaboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bCollege of Chemistry and Chemical Technology, Da Qing Petroleum Institute, Da Qing 163318, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.007 Å R factor = 0.066 wR factor = 0.146 Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

catena-Poly[[aqua(2,2'-bipyridine- $\kappa^2 N, N'$)manganese(II)]- μ -4-carboxylatophenoxyacetato- $\kappa^3 O, O': O''$]

In the title coordination polymer, $[Mn(4-CPOA)(2,2'-bipy)(H_2O)]_n$ [where 4-CPOA²⁻ is 4-carboxylatophenoxyacetate (C₉H₆O₅) and 2,2'-bipy is 2,2'-bipyridine (C₁₀H₈N₂)], each Mn^{II} ion displays a distorted octahedral coordination configuration, defined by three carboxyl O atoms from two different 4-CPOA²⁻ groups, two N atoms from the 2,2'bipyridine ligand and one water molecule. Adjacent Mn^{II} ions are linked by carboxylate groups into a one-dimensional chain structure with a shortest Mn···Mn distance of 9.771 (3) Å. A two-dimensional supramolecular network is constructed through O–H···O intermolecular hydrogen bonds and π - π stacking interactions.

Comment

4-Carboxyphenoxyacetic acid (4-CPOAH₂), with its multiple coordination sites and the capability of participating in hydrogen bonding as both a donor and an acceptor, represents an excellent candidate for the construction of supramolecular complexes (Gao, Li *et al.*, 2004; Gao, Huo *et al.*, 2004). Recently, we reported the structure of the Zn^{II} polymer, [Zn(4-CPOA)(2,2'-bipy)(H₂O)]_n, in which the Zn^{II} ion has an octahedral coordination geometry with the 4-CPOA^{2–} and 2,2'-bipyridine ligands (Gao, Gu *et al.*, 2004). The present Mn^{II} complex, [Mn(4-CPOA)(2,2'-bipy)(H₂O)]_n (where 4-CPOA^{2–} is 4-carboxylatophenoxyacetate and 2,2'-bipy is 2,2'-bipyridine), (I), is isostructural with the Zn^{II} analogue. The structural features discussed for the Zn^{II} analogue in the previous paper are applicable to the present complex.

(T)

Received 13 April 2005 Accepted 21 April 2005 Online 27 April 2005

Figure 1

ORTEP plot (Johnson, 1976) showing part of the one-dimensional chain of the title complex, with displacement ellipsoids drawn at the 30% probability level [symmetry code (i): $\frac{1}{2} + x$, $\frac{1}{2} + y$, z].

Adjacent Mn^{II} atoms are linked by carboxylate groups through both mono- and bidentate chelating modes, forming a zigzag chain structure along [110] and [110]. Within a chain, the shortest Mn···Mn distance is 9.771 (3) Å. In the crystal structure, the polymeric chains are assembled to form a twodimensional supramolecular network (Table 2) via O-H···O hydrogen-bonding and π - π stacking interactions between adjacent nitrogen heterocyclic rings of 2,2'-bipy [centroidcentroid distance = 3.585 (3) Å].

Experimental

The title complex was prepared by the addition of $MnCl_2 \cdot 6H_2O$ (4.68 g, 20 mmol) and 2,2'-bipy (3.12 g, 20 mmol) to a hot aqueous solution of 4-CPOAH₂ (3.92 g, 20 mmol); the pH was adjusted to 6 with 0.2 *M* NaOH solution. The solution was allowed to evaporate at room temperature, and yellow prism-shaped single crystals were obtained at room temperature over several days. Analysis calculated for $C_{19}H_{16}O_6MnN_2$: C 53.91, H 3.81, N 6.62%; found: C 54.07, H 3.85, N 6.59%.

Crystal data

6190 measured reflections

$[Mn(C_9H_6O_5)(C_{10}H_8N_2)(H_2O)]$	$D_x = 1.545 \text{ Mg m}^{-3}$
$M_r = 423.28$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 6068
a = 14.379(2) Å	reflections
b = 13.234 (2) Å	$\theta = 3.0-27.4^{\circ}$
c = 19.705 (3) Å	$\mu = 0.77 \text{ mm}^{-1}$
$\beta = 104.00 \ (3)^{\circ}$	T = 296 (2) K
$V = 3638.3 (10) \text{ Å}^3$	Prism, yellow
Z = 8	$0.32 \times 0.24 \times 0.18 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID	4139 independent reflections
diffractometer	2578 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.057$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.4^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -18 \rightarrow 18$
$T_{\min} = 0.792, T_{\max} = 0.874$	$k = -17 \rightarrow 16$

 $l = -25 \rightarrow 25$

Refinement

$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm A}^{-3}$	Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.066$ $\nu R(F^2) = 0.146$ r = 1.04 139 reflections 59 parameters	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.055P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45$ e Å ⁻³
		$\Delta \rho_{\rm max} = 0.45 \text{ e A}^{-3}$ $\Delta \rho_{\rm min} = -0.33 \text{ e A}^{-3}$

Table 1			
Selected	geometric para	meters (Å	⊾, °).

Mn1-N1	2.220 (4)	Mn1-O1W	2.136 (4)
Mn1-N2	2.284 (4)	O1-C1	1.257 (5)
Mn1-O1	2.274 (3)	O2-C1	1.268 (5)
Mn1-O2	2.251 (3)	O4-C9	1.242 (5)
Mn1-O5 ⁱ	2.124 (3)	O5-C9	1.232 (5)
N1-Mn1-N2	72.33 (14)	O2-Mn1-O1	58.08 (11)
N1-Mn1-O1	94.28 (12)	O5 ⁱ -Mn1-O2	102.48 (12)
N1-Mn1-O2	148.19 (12)	$O5^{i}-Mn1-O1W$	92.08 (13)
O1-Mn1-N2	92.72 (12)	O1W-Mn1-N1	103.37 (13)
O5 ⁱ -Mn1-N1	93.22 (13)	O1W-Mn1-N2	87.76 (13)
O5 ⁱ -Mn1-N2	165.06 (13)	O1W-Mn1-O1	161.60 (12)
O5 ⁱ -Mn1-O1	92.11 (13)	O1W-Mn1-O2	103.51 (12)
O2-Mn1-N2	92.06 (13)		

Symmetry code: (i) $\frac{1}{2} + x, \frac{1}{2} + y, z$.

Table 2			
Hydrogen-bonding geometry	(Å,	°).	

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
	(-)		/	
$O1W = H1W1 \cdots O2^{n}$ $O1W = H1W2 \cdots O4^{iii}$	0.85 (3)	1.94 (2) 1.78 (2)	2.732 (4) 2.609 (5)	155 (5) 162 (6)
	3 1		2.005 (5)	102 (0)

Symmetry codes: (ii) $\frac{3}{2} - x, \frac{3}{2} - y, 1 - z$; (iii) 1 - x, 1 - y, 1 - z.

C-bound H atoms were placed in calculated positions, with C–H = 0.93 or 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$, and were refined in the riding-model approximation. The H atoms of water molecules were located in a difference map and refined with O–H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054G036) and Heilongjiang University for supporting this work.

References

Gao, S., Gu, C.-S., Huo, L.-H., Liu, J.-W. & Zhao, J.-G. (2004). Acta Cryst. E60, m1906--m1908.

Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m1487–m1489.

Gao, S., Li, J.-R., Huo, L.-H., Liu, J.-W. & Gu, C.-S. (2004). Acta Cryst. E60, m100-m101.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
 Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of
- Göttingen, Germany.