Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao, ${ }^{\text {a }}$, Li-Hua Huo, ${ }^{a}$ Ji-Wei Liu $^{\text {a,b }}$ and Hui Zhao ${ }^{\text {a }}$

${ }^{\text {a }}$ Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Technology, Da Qing Petroleum Institute, Da Qing 163318, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.066$
$w R$ factor $=0.146$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[aqua($2,2^{\prime}$-bipyridine- $\kappa^{2} N, N^{\prime}$)-manganese(II)]- μ-4-carboxylatophenoxy-acetato- $\left.\kappa^{3} O, O^{\prime}: O^{\prime \prime}\right]$

In the title coordination polymer, $\left[\mathrm{Mn}(4-\mathrm{CPOA})\left(2,2^{\prime}-\right.\right.$ bipy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ [where 4 - CPOA^{2-} is 4 -carboxylatophenoxyacetate $\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)$ and 2,2'-bipy is 2,2'-bipyridine $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)$], each $\mathrm{Mn}^{\mathrm{II}}$ ion displays a distorted octahedral coordination configuration, defined by three carboxyl O atoms from two different $4-\mathrm{CPOA}^{2-}$ groups, two N atoms from the $2,2^{\prime}$ bipyridine ligand and one water molecule. Adjacent $\mathrm{Mn}^{\mathrm{II}}$ ions are linked by carboxylate groups into a one-dimensional chain structure with a shortest Mn••Mn distance of 9.771 (3) A. A two-dimensional supramolecular network is constructed through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds and $\pi-\pi$ stacking interactions.

Comment

4-Carboxyphenoxyacetic acid (4-CPOAH 2$)$, with its multiple coordination sites and the capability of participating in hydrogen bonding as both a donor and an acceptor, represents an excellent candidate for the construction of supramolecular complexes (Gao, Li et al., 2004; Gao, Huo et al., 2004). Recently, we reported the structure of the $\mathrm{Zn}^{\mathrm{II}}$ polymer, $\left[\mathrm{Zn}(4-\mathrm{CPOA})\left(2,2^{\prime} \text {-bipy }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, in which the $\mathrm{Zn}^{\mathrm{II}}$ ion has an octahedral coordination geometry with the $4-\mathrm{CPOA}^{2-}$ and 2,2'-bipyridine ligands (Gao, Gu et al., 2004). The present $\mathrm{Mn}^{\mathrm{II}}$ complex, $\left[\mathrm{Mn}(4-\mathrm{CPOA})\left(2,2^{\prime} \text {-bipy }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ (where $4-\mathrm{CPOA}^{2-}$ is 4-carboxylatophenoxyacetate and 2,2'-bipy is 2,2'-bipyridine), (I), is isostructural with the $\mathrm{Zn}^{\mathrm{II}}$ analogue. The structural features discussed for the $\mathrm{Zn}^{\mathrm{II}}$ analogue in the previous paper are applicable to the present complex.

As shown in Fig. 1, the $\mathrm{Mn}^{\mathrm{II}}$ centre is in a distorted octahedral coordination environment, defined by three carboxyl O atoms from two different $4-\mathrm{CPOA}^{2-}$ groups, two N atoms from one $2,2^{\prime}$-bipyridine ligand and one water molecule. Atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1$ and O 1 W constitute the equatorial plane, with an r.m.s. deviation of 0.13 (4) \AA, the $\mathrm{Mn}^{\mathrm{II}}$ atom being displaced from the plane by 0.17 (4) \AA. Atoms N 2 and $\mathrm{O} 5^{\mathrm{i}}$ [symmetry code: (i) $x+\frac{1}{2}, y+\frac{1}{2}, z$] occupy the axial sites, with an angle of $165.06(13)^{\circ}$.

Figure 1
ORTEP plot (Johnson, 1976) showing part of the one-dimensional chain of the title complex, with displacement ellipsoids drawn at the 30% probability level [symmetry code (i): $\frac{1}{2}+x, \frac{1}{2}+y, z$].

Adjacent $\mathrm{Mn}^{\mathrm{II}}$ atoms are linked by carboxylate groups through both mono- and bidentate chelating modes, forming a zigzag chain structure along [110] and [110]. Within a chain, the shortest $\mathrm{Mn} \cdots \mathrm{Mn}$ distance is 9.771 (3) \AA. In the crystal structure, the polymeric chains are assembled to form a twodimensional supramolecular network (Table 2) via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding and $\pi-\pi$ stacking interactions between adjacent nitrogen heterocyclic rings of 2,2'-bipy [centroidcentroid distance $=3.585$ (3) Å].

Experimental

The title complex was prepared by the addition of $\mathrm{MnCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($4.68 \mathrm{~g}, 20 \mathrm{mmol}$) and $2,2^{\prime}$-bipy ($3.12 \mathrm{~g}, 20 \mathrm{mmol}$) to a hot aqueous solution of $4-\mathrm{CPOAH}_{2}(3.92 \mathrm{~g}, 20 \mathrm{mmol})$; the pH was adjusted to 6 with 0.2 M NaOH solution. The solution was allowed to evaporate at room temperature, and yellow prism-shaped single crystals were obtained at room temperature over several days. Analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{MnN}_{2}$: C 53.91, H 3.81, N 6.62%; found: C 54.07, H 3.85, N 6.59%.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=423.28$
Monoclinic, $C 2 / c$
$a=14.379$ (2) \AA
$b=13.234$ (2) \AA
$c=19.705$ (3) \AA
$\beta=104.00(3)^{\circ}$
$V=3638.3(10) \AA^{3}$
$Z=8$
$D_{x}=1.545 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6068 reflections
$\theta=3.0-27.4^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=296(2) \mathrm{K}$
Prism, yellow
$0.32 \times 0.24 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID	4139 independent reflections
\quad diffractometer	2578 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.057$
Absorption correction: multi-scan	$\theta_{\max }=27.4^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-18 \rightarrow 18$
$T_{\min }=0.792, T_{\max }=0.874$	$k=-17 \rightarrow 16$
6190 measured reflections	$l=-25 \rightarrow 25$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.146$
$S=1.04$
4139 reflections
259 parameters

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{N} 1$	$2.220(4)$	$\mathrm{Mn} 1-\mathrm{O} 1 W$	$2.136(4)$
$\mathrm{Mn} 1-\mathrm{N} 2$	$2.284(4)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.257(5)$
$\mathrm{Mn} 1-\mathrm{O} 1$	$2.274(3)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.268(5)$
$\mathrm{Mn} 1-\mathrm{O} 2$	$2.251(3)$	$\mathrm{O} 4-\mathrm{C} 9$	$1.242(5)$
$\mathrm{Mn} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.124(3)$	$\mathrm{O} 5-\mathrm{C} 9$	$1.232(5)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$72.33(14)$	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 1$	$58.08(11)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1$	$94.28(12)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 2$	$102.48(12)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 2$	$148.19(12)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1 W$	$92.08(13)$
$\mathrm{O}_{1}-\mathrm{Mn} 1-\mathrm{N} 2$	$92.72(12)$	$\mathrm{O} 1 W-\mathrm{Mn} 1-\mathrm{N} 1$	$103.37(13)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1$	$93.22(13)$	$\mathrm{O} 1 W-\mathrm{Mn} 1-\mathrm{N} 2$	$87.76(13)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2$	$165.06(13)$	$\mathrm{O} 1 W-\mathrm{Mn} 1-\mathrm{O} 1$	$161.60(12)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1$	$92.11(13)$	$\mathrm{O} 1 W-\mathrm{Mn} 1-\mathrm{O} 2$	$103.51(12)$
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 2$	$92.06(13)$		
Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}+y, z$.			

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.85(3)$	$1.94(2)$	$2.732(4)$	$155(5)$
O1 $W-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.85(3)$	$1.78(2)$	$2.609(5)$	$162(6)$

Symmetry codes: (ii) $\frac{3}{2}-x, \frac{3}{2}-y, 1-z$; (iii) $1-x, 1-y, 1-z$.

C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ 0.93 or $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were refined in the riding-model approximation. The H atoms of water molecules were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (1) and 1.39 (1) \AA, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054G036) and Heilongjiang University for supporting this work.

References

Gao, S., Gu, C.-S., Huo, L.-H., Liu, J.-W. \& Zhao, J.-G. (2004). Acta Cryst. E60, m1906--m1908.
Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, m1487-m1489.
Gao, S., Li, J.-R., Huo, L.-H., Liu, J.-W. \& Gu, C.-S. (2004). Acta Cryst. E60, m100-m101.

metal-organic papers

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

